Answer: c. det(PAP^-1) = det(A)
To show that det(PAP-1) = det(P)det(A)det(P^-1), we can use the following properties of determinants:
1. det(AB) = det(A)det(B) for any matrices A and B
2. det(A^-1) = 1/det(A) for any invertible matrix A
Starting with det(PAP^-1), we can apply property 1 to get:
det(PAP^-1) = det(P)det(A)det(P^-1)
Then, we can use property 2 to rewrite det(P^-1) as:
det(PAP^-1) = det(P)det(A)(1/det(P))
Simplifying this expression gives:
det(PAP^-1) = det(A)
Therefore, det(PAP^-1) = det(P)det(A)det(P^-1) is equivalent to det(PAP^-1) = det(A).
So, the correct answer is:
c. det(PAP^-1) = det(A)