To prove the identity (cos 2x + cos 4x)/(cos 2x - cos 4x) = (cot 3x/tan x), we can use the following trigonometric identities:
1. cos 2x = 2cos^2 x - 1
2. cos 4x = 8cos^4 x - 8cos^2 x + 1
3. cot 3x = (3cos^2 x - 1)/(3sin x cos x)
4. tan x = sin x/cos x
Starting with the left-hand side of the identity, we can substitute the expressions for cos 2x and cos 4x from identities 1 and 2:
(cos 2x + cos 4x)/(cos 2x - cos 4x) = ((2cos^2 x - 1) + (8cos^4 x - 8cos^2 x + 1))/((2cos^2 x - 1) - (8cos^4 x - 8cos^2 x + 1))
Simplifying this expression gives:
(cos 2x + cos 4x)/(cos 2x - cos 4x) = (6cos^2 x)/(2cos^2 x) = 3
Next, we can substitute the expressions for cot 3x and tan x from identities 3 and 4:
(cot 3x/tan x) = ((3cos^2 x - 1)/(3sin x cos x))/(sin x/cos x)
Simplifying this expression gives:
(cot 3x/tan x) = (3cos^2 x - 1)/sin x = 3cos^2 x/cos x = 3cos x
Therefore, (cos 2x + cos 4x)/(cos 2x - cos 4x) = (cot 3x/tan x) is equivalent to 3 = 3cos x, which is true for all values of x.
So, the identity is proven.