20.2k views
1 vote
Prove the following identity:

(cos 2x + cos 4x)/(cos 2x - cos 4x) = (cot 3x/tan x)

2 Answers

4 votes
We can start by using the identity cos 2x = cos^2 x - sin^2 x and cos 4x = cos^2 2x - sin^2 2x. Substituting these into the left-hand side of the equation, we get:

(cos^2 x - sin^2 x + cos^2 2x - sin^2 2x)/(cos^2 x - sin^2 x - cos^2 2x + sin^2 2x)

Using the identity sin^2 x = 1 - cos^2 x, we can simplify the numerator and denominator:

(2cos^2 x - 2sin^2 x + 2cos^2 2x - 2sin^2 2x)/(2cos^2 x - 2sin^2 x - 2cos^2 2x + 2sin^2 2x)

Simplifying further, we get:

(cos^2 x - sin^2 x + cos^2 2x - sin^2 2x)/(cos^2 x - sin^2 x - cos^2 2x + sin^2 2x) = (cos^2 x - sin^2 x + 2cos^2 x - 2sin^2 x)/(cos^2 x - sin^2 x - 2cos^2 x + 2sin^2 x)

Using the identity cos^2 x + sin^2 x = 1, we can simplify this further:

(3cos^2 x - 3sin^2 x)/(cos^2 x - sin^2 x - 2cos^2 x + 2sin^2 x) = (3cos^2 x - 3sin^2 x)/(-cos^2 x + sin^2 x)

Using the identity cot x = cos x/sin x and tan x = sin x/cos x, we can simplify the right-hand side of the equation:

(cot 3x/tan x) = (cos 3x/sin 3x)/(sin x/cos x) = (cos 3x/cos x)(cos x/sin 3x) = cos 3x/sin 3x = cot 3x/(1/tan 3x) = cot 3x/tan 3x

Finally, we can substitute cos^2 x = 1 - sin^2 x
2 votes

To prove the identity (cos 2x + cos 4x)/(cos 2x - cos 4x) = (cot 3x/tan x), we can use the following trigonometric identities:

1. cos 2x = 2cos^2 x - 1

2. cos 4x = 8cos^4 x - 8cos^2 x + 1

3. cot 3x = (3cos^2 x - 1)/(3sin x cos x)

4. tan x = sin x/cos x

Starting with the left-hand side of the identity, we can substitute the expressions for cos 2x and cos 4x from identities 1 and 2:

(cos 2x + cos 4x)/(cos 2x - cos 4x) = ((2cos^2 x - 1) + (8cos^4 x - 8cos^2 x + 1))/((2cos^2 x - 1) - (8cos^4 x - 8cos^2 x + 1))

Simplifying this expression gives:

(cos 2x + cos 4x)/(cos 2x - cos 4x) = (6cos^2 x)/(2cos^2 x) = 3

Next, we can substitute the expressions for cot 3x and tan x from identities 3 and 4:

(cot 3x/tan x) = ((3cos^2 x - 1)/(3sin x cos x))/(sin x/cos x)

Simplifying this expression gives:

(cot 3x/tan x) = (3cos^2 x - 1)/sin x = 3cos^2 x/cos x = 3cos x

Therefore, (cos 2x + cos 4x)/(cos 2x - cos 4x) = (cot 3x/tan x) is equivalent to 3 = 3cos x, which is true for all values of x.

So, the identity is proven.

User IanBru
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories