you're correct, Jan used the height instead of the slant-height, which is needed for the SA, so hmm well, we really don't know the slant-height, hmmm let's find it, keeping in mind the slant-height is just the hypotenuse of either triangular cross-section
![\begin{array}{llll} \textit{using the pythagorean theorem} \\\\ c^2=a^2+o^2\implies c=√(a^2 + o^2) \end{array} \qquad \begin{cases} c=\stackrel{hypotenuse}{L}\\ a=\stackrel{adjacent}{11}\\ o=\stackrel{opposite}{22} \end{cases} \\\\\\ L=√( 11^2 + 22^2)\implies L=√( 121 + 484 ) \implies L=√( 605 )\implies L=11√(5) \\\\[-0.35em] ~\dotfill](https://img.qammunity.org/2024/formulas/mathematics/college/2ylkdfgewaafk988xy5lcewdu77sreqpky.png)
![\textit{surface area of a cone}\\\\ SA=\pi rL + \pi r^2~~ \begin{cases} r=radius\\ L=slant~height\\[-0.5em] \hrulefill\\ r=11\\ L=11√(5) \end{cases}\implies SA=\pi (11)(11√(5))+\pi (11)^2 \\\\\\ SA=121\pi √(5)+121\pi \implies \boxed{SA\approx 1230.14~m^2} \\\\[-0.35em] ~\dotfill\\\\ \textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=11\\ h=22 \end{cases}\implies V=\cfrac{\pi (11)^2(22)}{3}\implies \boxed{V\approx 2787.64~m^3}](https://img.qammunity.org/2024/formulas/mathematics/college/baohkobg0ber8ac0g4wxk0zc6rf32okwiw.png)