47.4k views
5 votes
The mass of one small ball is 1.50 g, and the mass of another is 870.0 g. If the center-to-center distance between these two balls is 10.0 cm, find the magnitude of the gravitational force that each exerts on the other.

User Fylax
by
8.2k points

1 Answer

5 votes

Answer:

Approximately
8.70 * 10^(-14)\; {\rm N}, assuming that both balls are of uniform density.

Step-by-step explanation:

The gravitational attraction between two spheres of uniform density is:


\begin{aligned}F &= (G\, M\, m)/(r^(2))\end{aligned},

Where:


  • G \approx 6.67 * 10^(-11)\; {\rm m^(3) \cdot kg^(-1) \cdot s^(-2)}} is the gravitational constant,

  • M and
    m are the mass of the two spheres, and

  • r is the distance between the center of the two spheres.

Apply unit conversion and ensure that mass and distance are both measured in standard units:


\displaystyle m = 1.50\; {\rm g} * \frac{1\; {\rm kg}}{10^(3)\; {\rm g}} = 1.50 * 10^(-3)\; {\rm kg}.


\displaystyle M = 870.0\; {\rm g} * \frac{1\; {\rm kg}}{10^(3)\; {\rm g}} = 0.8700\; {\rm kg}.


\displaystyle r = 10.0\; {\rm cm} * \frac{1\; {\rm m}}{100\; {\rm cm}}= 0.100\; {\rm m}.

Substitute these value into the equation and evaluate:


\begin{aligned}F &= (G\, M\, m)/(r^(2)) \\ &= \frac{(6.67 * 10^(-11)\; {\rm m^(3)\cdot s^(-1)\cdot kg^(-2)})\, (0.8700\; {\rm kg})\, (1.50* 10^(-3)\; {\rm kg})}{(0.100\; {\rm m})^(2)} \\ &= ((6.67 * 10^(-11))\, (0.8700)\, (1.50* 10^(-3)))/((0.100)^(2))\; {\rm kg\cdot m\cdot s^(-2)} \\ &= ((6.67 * 10^(-11))\, (0.8700)\, (1.50* 10^(-3)))/((0.100)^(2))\; {\rm N} \\ &\approx 8.70 * 10^(-14)\; {\rm N}\end{aligned}.

User Rejwanul Reja
by
8.9k points

No related questions found