39.1k views
1 vote
Find the simplified product: 3sqrt9x^4 x 3sqrt3x^8

Find the simplified product: 3sqrt9x^4 x 3sqrt3x^8-example-1

1 Answer

7 votes


\sqrt[3]{9\text{x}^4} *\sqrt[3]{3\text{x}^8}

To simplify it we multiply all the terms inside the cube root


\sqrt[3]{9\text{x}^4} *\sqrt[3]{3\text{x}^8}


\sqrt[3]{9\text{x}^4*{3\text{x}^8}}

Now we apply exponential property


\text{a}^\text{m}*\text{a}^\text{m}=\text{a}^\text{mn}


\text{x}^4*\text{x}^8=\text{x}^(12)


\sqrt[3]{9\text{x}^4*{3\text{x}^8}}


\sqrt[3]{27\text{x}^(12)}

Now we take cube root


\sqrt[3]{27}=3


\sqrt[3]{\text{x}^(12)}=\sqrt[3]{\text{x}^3*\text{x}^3*\text{x}^3*\text{x}^3}=\text{x}^4


\sqrt[3]{27\text{x}^(12)}

Answer:


\rightarrow\boxed{\bold{3x^4}}

User Chonchol Mahmud
by
7.4k points

No related questions found