40.3k views
0 votes
Find the length of the sides of the triangle with vertices A(0, 4), B(5, 4), and C(-3, -2). Classify the triangle by its sides.

User Arcturus B
by
8.4k points

1 Answer

4 votes

Answer:

Explanation:

(1)

Given vertices are A(3,4), B(2,-1) and C(4,-6).

We need to calculate the length of the sides AB,BC,AC.

We have to distance formula which can tell the distance between 2 points.

d = √(x2 - x1)^2 + (y2 - y1)^2.

(1)

AB = √(2 - 3)^2 + (-1 - 4)^2

= √(-1)^2 + (5)^2

= √1 + 25

= √26.

(2)

BC = √(4 - 2)^2 + (-6 + 1)^2

= √(2)^2 + (5)^2

= √4 + 25

= √29

(3)

AC = √(4 - 3)^2 + (-6 - 4)^2

= √(1)^2 + (-10)^2

= √1 + 100

= √101

Therefore, the length of the sides of the triangle are √26,√29 and √101.

----------------------------------------------------------------------------------------------------------

(2)

Let the given points be A(2,-2), B(-2,1) and C(5,2).

Using the distance formula,w e find that

⇒ AB = √(-2 - 2)^2 + (1 + 2)^2

= √16 + 9

= √25.

⇒ BC = √(5 + 2)^2 + (2 - 1)^2

= √49 + 1

= √50.

⇒ AC = √(5 - 2)^2 + (2 + 2)^2

= √9 + 16

= √25.

Now,

⇒ AB^2 + AC^2

⇒ (5)^2 + (5)^2

⇒ 25 + 25

⇒ 50.

⇒ (BC)^2.

Therefore, AB^2 + AC^2 = BC^2.

∴ We can conclude that ΔABC is a right angled triangle

User Shorpy
by
7.8k points

No related questions found