Answer:
--------------------------------------
Vertex form of a quadratic function:
- y = a(x - h)² + k, where (h, k) is vertex and a - constant
Given (h, k) = (-2, -13) and a point (0, - 5).
Substitute all into equation and solve for a:
- -5 = a(0 - (-2))² - 13
- -5 = 4a - 13
- 4a = 13 - 5
- 4a = 8
- a = 2
The parabola is:
Convert it to the standard form:
- y = 2(x + 2)² - 13
- y = 2(x² + 4x + 4) - 13
- y = 2x² + 8x + 8 - 13
- y = 2x² + 8x - 5