218k views
3 votes
Solve using Laplace Transform. (if necessary, use partial fraction expansion). x' + 1/2 x = 17sin(2t), x(0) = -1

1 Answer

4 votes

Use Laplace Transforms to solve the following differential equation.


x'+(1)/(2)x=17sin(t); \ x(0)=-1

Take the Laplace transform of everything in the equation.


L\{x'\}=sX-x(0) \Rightarrow \boxed{ sX+1}


L\{x\}=X \Rightarrow \boxed{ (1)/(2) X}


L\{sin(at)\}=(a)/(s^2+a^2) \Rightarrow 17(2)/(s^2+4) \Rightarrow \boxed{(34)/(s^2+4) }

Now plug these values into the equation and solve for "X."


\Longrightarrow sX+1+(1)/(2)X=(34)/(s^2+4) \Longrightarrow sX+(1)/(2)X=(34)/(s^2+4) -1 \Longrightarrow X(s+(1)/(2) )=(34)/(s^2+4) -1


\Longrightarrow X=(((34)/(s^2+4) -1))/((s+(1)/(2) )) \Longrightarrow \boxed{X=(-2(s^2-30))/((2s+1)(s^2+4))}

Now take the inverse Laplace transform of everything in the equation.


L^(-1)\{X\}=x(t)


L^(-1)\{\((-2(s^2-30))/((2s+1)(s^2+4))\} Use partial fractions to split up this fraction.


[(-2(s^2-30))/((2s+1)(s^2+4))=(A)/(2x+1)+(Bs+C)/(s^2+4)] (2s+1)(s^2+4)


\Longrightarrow -2(s^2-30)=A(s^2+4)+(Bs+C)(2s+1)


\Longrightarrow -2s^2+60=As^2+4A+2Bs^2+Bs+2Cs+C

Use comparison method to find the undetermined coefficients A, B, and C.

For s^2 terms:


-2=A+2B

For s terms:


0=B+2C

For #'s:


60=4A+C

After solving the system of equations we get, A=14, B=-8, and C=4


\Longrightarrow L^(-1)\{\((-2(s^2-30))/((2s+1)(s^2+4))\} \Longrightarrow L^(-1)\{ (-8s)/(s^2+4)+(4)/(s^2+4)+(14)/(2s+1) \}


\Longrightarrow L^(-1)\{ (-8s)/(s^2+4)+(4)/(s^2+4)+(14)/(2s+1) \}=-8cos(2t)+2sin(2t)+7e^{(1)/(2)t }

Thus, the DE is solved.


\boxed{\boxed{x(t)=-8cos(2t)+2sin(2t)+7e^{(1)/(2)t }}}

User Rakhee
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.