93.4k views
3 votes
An aircraft has the following directional stability and control characteristics: Cng = +0.0035/deg Cns, = -0.003/deg Ormax = 30 deg a) Determine the rudder deflection required to maintain a sideslip angle of B = 4 deg. Which rudder pedal would you push to get B = 4 deg? w lby b) Given the following conditions: -60.C Cle=1.0 S landing Assuming Vand = 1.2 Vstall, determine the maximum crosswind component that can be handled by the rudder at sea level. We want to land the aircraft with the longitudinal acis aligned with the runway.

User Makapuf
by
8.8k points

1 Answer

6 votes

Answer:

Unfortunately, the given problem lacks some important information, such as the aircraft type, wing span, and weight, which are necessary to calculate the maximum crosswind component. Without this information, it is not possible to provide a meaningful answer.

Regarding part (a) of the question, we can use the formula for the sideslip angle to find the rudder deflection required:

B = Cng * beta + Cns * rudder_deflection

where beta is the sideslip angle and rudder_deflection is the angle of the rudder relative to its neutral position. Rearranging the equation, we get:

rudder_deflection = (B - Cng * beta) / Cns

Substituting the given values, we get:

rudder_deflection = (4 - 0.0035/deg * beta) / (-0.003/deg)

Without knowing the value of beta, we cannot determine the rudder deflection required. However, we can determine which rudder pedal to push based on the sign of the rudder deflection. If the rudder deflection is positive, we need to push the right rudder pedal, and if it is negative, we need to push the left rudder pedal.

Note: Cng and Cns are the directional stability and control derivatives, respectively, and Ormax is the maximum rudder deflection angle.

Step-by-step explanation:

User Dyamond
by
8.0k points

No related questions found