113k views
4 votes
1. Find a derivative of this function using chain rule f(x) = sqrt(1-x^2)

2. Find the two values of x for which the function f(x) = 4x^3 + 3x^2 - 6x + 1 has critical points. (local max and min)

3. Use second derivative test to find local min and max of the function f(x) = 1 + 3x^2 - 2x^3.

1 Answer

3 votes
1. To find the derivative of f(x) = sqrt(1-x^2), we can use the chain rule:

f'(x) = -x / sqrt(1-x^2)

2. To find the critical points of f(x) = 4x^3 + 3x^2 - 6x + 1, we need to find the values of x where f'(x) = 0 or f'(x) is undefined. First, we find the derivative:

f'(x) = 12x^2 + 6x - 6

Setting f'(x) = 0, we get:

12x^2 + 6x - 6 = 0

Simplifying, we get:

2x^2 + x - 1 = 0

Using the quadratic formula, we get:

x = (-1 ± sqrt(1 + 8)) / 4

x = -1 or x = 1/2

So, the critical points are x = -1 and x = 1/2.

3. To use the second derivative test to find the local minima and maxima of f(x) = 1 + 3x^2 - 2x^3, we need to find the critical points and the second derivative:

f'(x) = 6x^2 - 6x

Setting f'(x) = 0, we get:

6x^2 - 6x = 0

Simplifying, we get:

6x(x - 1) = 0

So, the critical points are x = 0 and x = 1.

f''(x) = 12x - 6

At x = 0, f''(0) = -6, so f(x) has a local maximum at x = 0.

At x = 1, f''(1) = 6, so f(x) has a local minimum at x = 1.
User GlassFish
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories