379,610 views
17 votes
17 votes
100 POINTS please help!!!!

100 POINTS please help!!!!-example-1
User Jamie Counsell
by
3.1k points

1 Answer

12 votes
12 votes

Answer:

Standard deviation σ = 1.40 (2 d.p.)

Explanation:

If a continuous random variable X is normally distributed with mean μ and variance σ², it is written as:


\boxed{X \sim\text{N}(\mu,\sigma^2)}

Given:

  • Mean μ = 13.9 g/dL
  • P(X < 16.2) = 0.95

Therefore, if the haemoglobin levels are normally distributed:


X \sim\text{N}(13.9,\sigma^2)

where X is the haemoglobin level.

Converting to the Z distribution:


\boxed{\textsf{If }\: X \sim\textsf{N}(\mu,\sigma^2)\:\textsf{ then }\: (X-\mu)/(\sigma)=Z, \quad \textsf{where }\: Z \sim \textsf{N}(0,1)}

Transform X to Z:


\text{P}(X < 16.2)= \text{P}\left(Z < (16.2-13.9)/(\sigma)\right)= 0.95

According to the z-tables, when p = 0.95, z = 1.6449


\implies (16.2-13.9)/(\sigma)=1.6449


\implies (2.3)/(\sigma)=1.6449


\implies \sigma=(2.3)/(1.6449)


\implies \sigma=1.40

User DantheMan
by
2.9k points