Answer:
4092
Explanation:
We can see that this is a geometric sequence where the first term is 4 and the common ratio is 2. We can use the formula for the sum of a geometric sequence to find the sum of this series:
sum = a(1 - r^n) / (1 - r)
where a is the first term, r is the common ratio, and n is the number of terms.
We need to find n, the number of terms. We can use the formula for the nth term of a geometric sequence:
a_n = a * r^(n-1)
We want to find the value of n when a_n = 2048:
2048 = 4 * 2^(n-1)
512 = 2^(n-1)
n-1 = log2(512) = 9
n = 10
So there are 10 terms in the series. Now we can use the formula for the sum of a geometric sequence:
sum = a(1 - r^n) / (1 - r)
sum = 4(1 - 2^10) / (1 - 2)
sum = 4(1 - 1024) / (-1)
sum = 4(1023)
sum = 4092
Rounding to the nearest hundredth, the sum is approximately 4092.00.