Answer:
Below
Step-by-step explanation:
In a mass-spring system that is oscillating horizontally, the energy changes between potential energy and kinetic energy. When the mass is at its maximum displacement from the equilibrium position, it has maximum potential energy and zero kinetic energy. As the mass starts to move towards the equilibrium position, its potential energy decreases while its kinetic energy increases. At the equilibrium position, the mass has zero potential energy and maximum kinetic energy. As the mass moves away from the equilibrium position, its kinetic energy decreases while its potential energy increases. This cycle repeats as long as the system is oscillating.
Now, if the support of the system is vibrating vertically, the energy changes that occur during horizontal oscillations cause the mass to move vertically as well. As the mass moves to its maximum displacement from the equilibrium position horizontally, it also moves upwards, gaining potential energy due to its increased height from the ground. As the mass moves towards the equilibrium position horizontally, it also moves downwards, losing potential energy and gaining kinetic energy due to its increased speed towards the ground. At the equilibrium position, the mass has zero potential energy but maximum kinetic energy, which is all in the vertical direction. As the mass moves away from the equilibrium position horizontally, it also moves upwards, gaining potential energy again. The cycle repeats, causing the mass to oscillate vertically as well.
Therefore, the energy changes that occur during horizontal oscillations in a mass-spring system can cause the system to vibrate vertically if the support is vibrating vertically.