The choice of chemical ingredients in airbags influences their effectiveness in several key ways:
1. Rate and speed of gas generation. The chemicals must decompose rapidly enough to fill the airbag before the occupant impacts the steering wheel or dashboard. Slower reactions will not produce enough gas quickly enough. Faster reactions can lead to over-pressurization and airbag rupture.
2. Total volume of gas produced. The ingredients must generate enough gas to rapidly inflate the airbag to an adequate size. Not enough gas will result in an under-inflated bag that does not properly cushion the occupant.
3. Controlled deflation. The airbag must deflate in a controlled manner as the occupant moves into it. Chemicals that produce gas too quickly can lead to an over-inflated bag that does not absorb impact energy effectively. The ingredient proportion and composition can influence how quickly the bag deflates.
4. Modulation for different impacts. More advanced airbags use sensors to determine the severity of impact and size of the occupant. The chemical system must be able to modulate deployment accordingly by speeding up, slowing down, or terminating gas generation at the appropriate times. This helps prevent unnecessary airbag deployment or inadequate cushioning for different event scenarios.
5. Stability and safety. The chemical ingredients must remain stable and non-hazardous until deployed. They cannot be overly volatile, corrosive or reactive prior to collision. Proper encapsulation and housing of the chemicals is also required to avoid leaks that could activate the airbag inadvertently or lead to harm from exposure.
In summary, the choice of airbag chemicals involves balancing these different and sometimes competing goals to achieve rapid, controlled and modulated deployments that properly cushion occupants while also ensuring stability, safety and avoiding unnecessary airbag operations. The ingredients, proportions and overall system design must all be optimized to meet the complex requirements for effective airbag performance.