193k views
1 vote
Think About the Process A jar contains only​ pennies, nickels,​ dimes, and quarters. There are 18 ​pennies, 25 ​dimes, and 16 quarters. The rest of the coins are nickels. There are 88 coins in all. How many of the coins are not​ nickels? If n represents the number of nickels in the​ jar, what equation could you use to find​ n?

User Mmmh Mmh
by
8.3k points

1 Answer

2 votes
We know that the jar contains a total of 88 coins. We also know that there are 18 pennies, 25 dimes, and 16 quarters in the jar. Therefore, the number of nickels can be found by subtracting the total number of these coins from 88:

Number of nickels = 88 - (18 + 25 + 16) = 29

So there are 29 nickels in the jar. To find the number of coins that are not nickels, we can subtract this number from the total number of coins:

Number of non-nickels = 88 - 29 = 59

Therefore, there are 59 coins in the jar that are not nickels.

To check our work, we can make sure that the total number of coins adds up correctly:

18 pennies + 25 dimes + 29 nickels + 16 quarters = 88 coins

So our answer checks out.

To find the number of nickels in the jar using an equation, we could use:

n = total number of coins - (number of pennies + number of dimes + number of quarters)

where n represents the number of nickels in the jar. Plugging in the given values, we get:

n = 88 - (18 + 25 + 16) = 29

which is consistent with our earlier calculation.
User Lakshmi
by
7.7k points