165k views
2 votes
Use the region in the first quadrant bounded by √x, y=2 and the y - axis to determine the area of the region. Evaluate the integral.

A. 50.265

B. 4/3

C. 16

D. 8

E. 8π

F. 20/3

G. 8/3

E/ -16/3

User Jen
by
8.5k points

1 Answer

5 votes

Answer:

G. 8/3

Explanation:

To find the area of the region in the first quadrant bounded by the curves √x, y=2 and the y-axis, we need to integrate the function that gives the height of the region at each point along the x-axis. The height of the region is given by the difference between the curve y=2 and the curve y=√x.

We can write the integral for the area A as follows:

A = ∫[0,4] (2-√x) dx

The limits of integration are from 0 to 4 because the curves intersect at x=4. We integrate with respect to x because the curves are functions of x.

To evaluate the integral, we first use the power rule of integration to simplify the expression inside the integral:

A = ∫[0,4] (2-√x) dx = [2x - (2/3)x^(3/2)]|[0,4]

Now, we substitute the limits of integration:

A = [2(4) - (2/3)(4)^(3/2)] - [2(0) - (2/3)(0)^(3/2)]

A = 8 - (16/3)

A = 8/3

Therefore, the area of the region in the first quadrant bounded by the curves √x, y=2 and the y-axis is 8/3 square units.

User Lkraav
by
8.2k points