112k views
4 votes
Two sides of a trapezoid are shown below. The segment connecting points (-1,5) and (5,5) is a base of the trapezoid.

Draw the two missing sides so that the midsegment has a length of 9 units.

User Craesh
by
8.4k points

1 Answer

3 votes

Answer:

To draw the missing sides of the trapezoid so that the midsegment has a length of 9 units, you can follow these steps:

Plot the given base segment connecting points (-1,5) and (5,5) on a coordinate plane.

Find the midpoint of the given base segment using the midpoint formula: Midpoint = ((x1 + x2)/2, (y1 + y2)/2), where (x1, y1) and (x2, y2) are the coordinates of the endpoints of the given base segment.

Plot the midpoint found in step 2 on the coordinate plane as the midpoint of the midsegment. Label it.

Draw two perpendicular lines from the midpoint found in step 2, each extending towards the other base of the trapezoid.

The intersection points of the perpendicular lines with the other base of the trapezoid will be the vertices of the missing sides.

Connect the vertices of the missing sides with the endpoints of the given base segment to complete the trapezoid.

Note: The specific length and orientation of the missing sides will depend on the location of the midpoint and the given base segment. There can be multiple valid trapezoids with a midsegment of length 9 units that connect the given bases at the midpoint.

Explanation:

User Tyriek
by
7.7k points