120k views
3 votes
Help asap, show work pls. find the vertices and name two points on the minor axis.

9x^2+y^2-18x-6y+9=0

1 Answer

4 votes

Answer:

To find the vertices and name two points on the minor axis of the ellipse represented by the equation 9x^2+y^2-18x-6y+9=0, we need to first put it in standard form by completing the square for both x and y terms.

Starting with the x terms:

9x^2 - 18x = 0

9(x^2 - 2x) = 0

We need to add and subtract (2/2)^2 = 1 to complete the square inside the parentheses:

9(x^2 - 2x + 1 - 1) = 0

9((x-1)^2 - 1) = 0

9(x-1)^2 - 9 = 0

9(x-1)^2 = 9

(x-1)^2 = 1

x-1 = ±1

x = 2 or 0

Now we can do the same for the y terms:

y^2 - 6y = 0

y^2 - 6y + 9 - 9 = 0

(y-3)^2 - 9 = 0

(y-3)^2 = 9

y-3 = ±3

y = 6 or 0

So the center of the ellipse is (1, 3), the major axis is along the x-axis with a length of 2a = 2√(9/1) = 6, and the minor axis is along the y-axis with a length of 2b = 2√(1/9) = 2/3.

The vertices are the points on the major axis that are farthest from the center. Since the major axis is along the x-axis, the vertices will be (1±3, 3), or (4, 3) and (-2, 3).

To find two points on the minor axis, we can use the center and the length of the minor axis. Since the minor axis is along the y-axis, we can add or subtract the length of the minor axis from the y-coordinate of the center to find the two points. Therefore, the two points on the minor axis are (1, 3±1/3), or approximately (1, 10/3) and (1, 8/3).

Explanation:

User Shantice
by
8.3k points

No related questions found