The slope of a linear function represents the rate at which the output variable (y) changes with respect to the input variable (x). The slope is often denoted by the letter "m" and can be calculated using the formula:
m = (y2 - y1) / (x2 - x1)
where (x1, y1) and (x2, y2) are any two points on the line.
To find the slope of Function 1, we can compare the coefficient of x in its equation with the formula for slope. We see that the coefficient of x in y = (4/5)x + 2 is 4/5. Therefore, the slope of Function 1 is 4/5.
To find the slope of Function 2, we can choose any two points from the table and use the slope formula. Let's choose the points (0, 1) and (3, 2.5). Plugging in these values, we get:
m = (2.5 - 1) / (3 - 0) = 1.5 / 3 = 1/2
Therefore, the slope of Function 2 is 1/2.
Comparing the slopes, we can see that the slope of Function 1 (4/5) is greater than the slope of Function 2 (1/2). Therefore, Function 1 has a greater slope than Function 2.