Since the x-intercepts are the points where the fruit or vegetable hits the ground, their y-coordinates are 0. We can find the x-coordinate of the second x-intercept by using the fact that the path of the fruit or vegetable is a parabolic curve.
If we assume that the launch point of the fruit or vegetable is at (a, b), where a is the horizontal distance it travels and b is the initial height, then the equation of the parabolic path can be written as:
y = ax^2 + bx
To find the second x-intercept, we need to solve for x when y = 0. Thus, we have:
0 = ax^2 + bx
Factoring out x, we get:
0 = x(ax + b)
Since the x-coordinate of the first x-intercept is 0, we know that a is not equal to 0. Therefore, the only way for the equation to be true is if x = 0 or ax + b = 0. We already know that x = 0 corresponds to the first x-intercept, so we solve ax + b = 0 for x:
ax + b = 0
x = -b/a
Therefore, the x-coordinate of the second x-intercept is -b/a.
The initial height b is not given in the problem, so we cannot determine the exact coordinates of the second x-intercept.