Answer:
8.5 ounces.
Explanation:
The volume of the conical cup is given by the formula V = (1/3)πr²h, where r is the radius and h is the height. Since the diameter of the cup is 3 inches, the radius is 1.5 inches. Thus, the volume of the conical cup is:
V = (1/3)π(1.5²)(3) = 7.07 cubic inches
The volume of the cylindrical cup is given by the formula V = πr²h. Since the radius is 1.5 inches and the height is 3 inches, the volume of the cylindrical cup is:
V = π(1.5²)(3) = 21.2 cubic inches
To find the weight of the water in each cup, we need to multiply the volume of each cup by the weight of 1 cubic inch of water:
Weight of water in conical cup = 7.07 × 0.6 = 4.24 ounces
Weight of water in cylindrical cup = 21.2 × 0.6 = 12.72 ounces
Therefore, the water in the cylindrical cup weighs 12.72 - 4.24 = 8.48 more ounces than the water in the conical cup. Rounded to the nearest tenth, this is 8.5 ounces.