108k views
0 votes
Given u = -5i + 8j and v= 56i + 35j, are u and v parallel or orthogonal? Explain.

User Cashew
by
8.2k points

1 Answer

5 votes

Answer:

Perpendicular

Given the following vectors:


\vec u =-5 \hat i +8 \hat j\\\vec v =56 \hat i +35 \hat j\\

We are asked to determine whether vectors u and v are parallel or perpendicular.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

How do we do this?

To determine whether two vectors are parallel, the result of their cross product is zero.

To determine whether two vectors are perpendicular, the result of their dot product is zero.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


\bold{Given \ two \ vectors...}\\\vec a=a_x \hat i + a_y \hat j +a_z \hat k\\\\\vec b=b_x \hat i + b_y \hat j +b_z \hat k\\


\bold{Cross \ Product} \Rightarrow \vec a * \vec b= \begin{vmatrix}\hat i & \hat j & \hat k\\a_x & a_y & a_z\\b_x & b_y & b_z\end{vmatrix} \rightarrow \begin{vmatrix}a_y & a_z \\b_y & b_z \end{vmatrix} \hat i- \begin{vmatrix}a_x & a_z \\b_x & b_z \end{vmatrix} \hat j+\begin{vmatrix}a_x & a_y \\b_x & b_y \end{vmatrix} \hat k


\bold{Dot \ Product} \Rightarrow \vec a \cdot \vec b = a_xb_x+a_yb_y+a_zb_z

Note: The result of the cross product is a vector while the result of a dot product is a scalar.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Cross product:


\vec u * \vec v = \begin{vmatrix}\hat i & \hat j & \hat k\\-5 & 8 & 0\\56 & 35 & 0\end{vmatrix}


\Longrightarrow \begin{vmatrix} 8 & 0 \\ 35 & 0 \end{vmatrix} \hat i- \begin{vmatrix}-5 & 0 \\56 & 0 \end{vmatrix} \hat j+\begin{vmatrix}-5 & 8 \\56 & 35 \end{vmatrix} \hat k


\Longrightarrow [(8)(0)-(0)(35)]\hat i -[(-5)(0)-(0)(56)]\hat j +[(-5)(35)-(8)(56)] \hat k


\Longrightarrow (0)\hat i (0)\hat j +[-175-448] \hat k


\Longrightarrow (0)\hat i (0)\hat j +(-623) \hat k


Thus, \ \boxed{\vec u * \vec v = 0\hat i + 0\hat j -623 \hat k}

Which does not equal zero. So, these vectors aren't parallel.

Now, dot product:


\vec u \cdot \vec v = (-5)(56)+(8)(35)+(0)(0)


\Longrightarrow \vec u \cdot \vec v = -280+280+0


Thus, \ \boxed{ \vec u \cdot \vec v = 0}

The dot product of vectors u and v equals zero. These vectors are perpendicular!

User Siraj
by
8.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.