140k views
5 votes
Can you guys help me do thus

Can you guys help me do thus-example-1
User Vgunnu
by
7.9k points

1 Answer

3 votes

Answer:

(a) x = 6.71 cm (3 s.f.)

θ = 30.8° (3 s.f.)

(b) radius = 3.00 cm (3 s.f.)

Explanation:

Part (a)

The given triangle is made up of two right triangles.

In the right triangle on the right side, the side labelled "x" is opposite angle 40° and the side labelled 8 cm is adjacent to angle 40°. Therefore, to find the length of side x, use the tangent trigonometric ratio.


\boxed{\begin{minipage}{7 cm}\underline{Tangent trigonometric ratio} \\\\$\sf \tan(\theta)=(O)/(A)$\\\\where:\\ \phantom{ww}$\bullet$ $\theta$ is the angle. \\ \phantom{ww}$\bullet$ $\sf O$ is the side opposite the angle. \\\phantom{ww}$\bullet$ $\sf A$ is the side adjacent the angle.\\\end{minipage}}

Therefore, the values are:

  • θ = 40°
  • O = x
  • A = 8 cm

Substitute the values into the equation and solve for x:


\implies \tan 40^(\circ)=(x)/(8)


\implies 8 \cdot \tan 40^(\circ)=8 \cdot(x)/(8)


\implies 8 \tan 40^(\circ)=x


\implies x=8 \tan 40^(\circ)


\implies x=6.71279704...


\implies x=6.71\; \rm cm\;(3\;s.f.)

Therefore, the length of side x is 6.71 cm (3 s.f.).

In the right triangle on the left side, the side labelled "x" is adjacent angle θ and the side labelled 4 cm is opposite to angle θ. Therefore, to find the size of angle θ, use the tangent trigonometric ratio.

Therefore, the values are:

  • θ = θ
  • O = x
  • A = 4 cm

Substitute the values into the equation and solve for x:


\implies \tan \theta=(4)/(x)


\implies \tan \theta=(4)/(8 \tan 40^(\circ))


\implies \tan \theta=(1)/(2 \tan 40^(\circ))


\implies \theta=\tan^(-1)\left((1)/(2 \tan 40^(\circ))\right)


\implies \theta=30.7897330...^(\circ)}


\implies \theta=30.8^(\circ)}\; \rm (3\;s.f.)

Therefore, the size of angle θ is 30.8° (3 s.f.).


\hrulefill

Part (b)

The formula for the volume of a cylinder is:


\boxed{V=\pi r^2 h}

where:

  • V is the volume.
  • r is the radius.
  • h is the height.

Given values:

  • height, h = 5.3 cm
  • volume, V = 150 cm³

Substitute the given values into the formula and solve for r:


\implies \pi \cdot r^2 \cdot 5.3 = 150


\implies r^2=(150)/(5.3\pi)


\implies √(r^2)=\sqrt{(150)/(5.3\pi)}


\implies r=√(9.00877036...)


\implies r=3.00146137...


\implies r=3.00\; \rm cm\;(3\;s.f.)

Therefore, the radius of the cylinder is 3.00 cm (3 s.f.)

User Jbgt
by
8.6k points