85.1k views
0 votes
At a point in a stressed body, the cartesian components of stress are sigma xx = 60 MPa, sigma yy= -40 MPa, sigma zz = 20 MPa, tau xy = -40 MPa, tau yz = 20 MPa, and tau zx= 30 MPa. Determine:

(a) The normal and shear stresses on a plane whose outer normal has the following direction cosines: cos (n, x) = 0.429 ; cos (n, y) = 0.514; cos (n, z) = 0.743

1 Answer

7 votes

Answer:

The stress tensor in matrix form is:

$$

\begin{bmatrix}

\sigma_{xx} & \tau_{xy} & \tau_{zx} \\

\tau_{xy} & \sigma_{yy} & \tau_{yz} \\

\tau_{zx} & \tau_{yz} & \sigma_{zz}

\end{bmatrix}

=

\begin{bmatrix}

60 & -40 & 30 \\

-40 & -40 & 20 \\

30 & 20 & 20

\end{bmatrix} \text{MPa}

$$

To find the normal and shear stresses on a plane with direction cosines $(0.429, 0.514, 0.743)$, we need to calculate the stress components in that direction. We can use the formula:

$$

\begin{bmatrix}

\sigma_n \\

\tau_{shear}

\end{bmatrix}

=

\begin{bmatrix}

cos(n,x)^2 & cos(n,y)^2 & cos(n,z)^2 & 2cos(n,x)cos(n,y) & 2cos(n,y)cos(n,z) & 2cos(n,z)cos(n,x) \\

\frac{1}{2}sin(2\theta_{xy}) & \frac{1}{2}sin(2\theta_{yz}) & \frac{1}{2}sin(2\theta_{zx}) & cos(\theta_{xy})sin(\theta_{xy}) & cos(\theta_{yz})sin(\theta_{yz}) & cos(\theta_{zx})sin(\theta_{zx})

\end{bmatrix}

\begin{bmatrix}

\sigma_{xx} \\

\sigma_{yy} \\

\sigma_{zz} \\

\tau_{xy} \\

\tau_{yz} \\

\tau_{zx}

\end{bmatrix}

$$

where $\theta_{xy}$, $\theta_{yz}$, and $\theta_{zx}$ are the angles between the plane and the $xy$, $yz$, and $zx$ planes, respectively.

Plugging in the given values, we get:

$$

\begin{bmatrix}

\sigma_n \\

\tau_{shear}

\end{bmatrix}

=

\begin{bmatrix}

0.184 & 0.264 & 0.953 & 0.436 & 0.435 & -0.786 \\

-51.7 & 0 & 29.7 & 20 & 123.7 & -32.2

\end{bmatrix}

\begin{bmatrix}

60 \\

-40 \\

20 \\

-40 \\

20 \\

30

\end{bmatrix}

=

\begin{bmatrix}

23.5 \\

-49.3

\end{bmatrix} \text{MPa}

$$

Therefore, the normal stress on the plane is 23.5 MPa, and the shear stress on the plane is -49.3 MPa.

User Lakshman Chilukuri
by
8.0k points