116k views
3 votes
The speed of an electron is known to be between 3.0×10^6 m/s and 3.3×10^6 m/s . Estimate the uncertainty in its position.

User Cumhur Ata
by
7.6k points

1 Answer

4 votes

Answer:

Approximately
3.9* 10^(-11)\; {\rm m}.

Step-by-step explanation:

By the Heisenberg Uncertainty Principle:


\displaystyle \Delta p\, \Delta x \ge (h)/(4\, \pi),

Where:


  • \Delta p is the uncertainty in momentum,

  • \Delta x is the uncertainty in position, and

  • h \approx 6.626 * 10^(-34)\; {\rm kg \cdot m^(2)\cdot s^(-1)} is Planck's Constant.

In this question, the measured velocity of this electron is
3.15 * 10^(6) \pm 0.15* 10^(6)\; {\rm m\cdot s^(-1)}. The uncertainty of this measurement is
\Delta v = 1.5 * 10^(5)\; {\rm m\cdot s^(-1)}.

Assume that the mass of this electron is the same as that of a stationary electron:
m = m_(e) \approx 9.11 * 10^(-31)\; {\rm kg}.

With an uncertainty in velocity of
\Delta v = 1.5 * 10^(5)\; {\rm m\cdot s^(-1)}, the uncertainty in the momentum of this electron would be:


\begin{aligned}\Delta p &= m\, \Delta v \\ &\approx (9.11 * 10^(-31)\; {\rm kg})\, (1.5 * 10^(5)\; {\rm m\cdot s^(-1)}) \\ &\approx 1.3665 * 10^(-24)\; {\rm kg\cdot m\cdot s^(-1)} \end{aligned}.

Rearrange the Uncertainty Principle to find the uncertainty in position:


\begin{aligned}\Delta x &= (h)/(4\, \pi\, \Delta p) \\ &\approx \frac{6.626 * 10^(-34)\; {\rm kg\cdot m^(2)\cdot s^(-1)}}{4\, \pi\, (1.3665 * 10^(-24)\; {\rm kg\cdot m\cdot s^(-1)})} \\ &\approx 3.86 * 10^(-11)\; {\rm m}\end{aligned}.

User Waxen
by
8.9k points

No related questions found