198k views
4 votes
Can someone help with these two questions on my Calc 3 hw? It is due tonight. Thank you!

Can someone help with these two questions on my Calc 3 hw? It is due tonight. Thank-example-1

1 Answer

5 votes

Question #14:

Find the work done by the force field,
\vec F(x,y,z)= < x-y^2, \ y-z^2, \ z-x^2 >,

on a particle that moves along the line segment from (0,0,1) to (3,1,0).

The parametrized form of a line is given as,


x=x_0+v_xt


y=y_0+v_yt


z=z_0+v_zt

Where
(x_0,y_0,z_0) is a point the line passes through and
\vec v= < v_x,v_y,v_z > is the direction of the line.


\Longrightarrow \vec v= < 3-0,1-0,0-1 > \Longrightarrow \boxed{ \vec v= < 3,1,-1 > }


\Longrightarrow \boxed{(x_0,y_0,z_0)=(0,0,1)}


z=-t+1, 0\leq t\leq 1

This would imply that,
dx=3dt,dy=dt,dz=-dt


Work, W=\int\limits^a_b {\vec F(x,y,z) \cdot} < dx,dy,dz > \,dt


\Longrightarrow \vec F(x,y,z)= < 3t-t^2, \ t-(-t+1)^2, \ -t+1-(3t)^2 >


\Longrightarrow \boxed{\vec F(x,y,z)= < 3t-t^2, \ -t^2+3t-1, \ -9t^2-t+1 > }


\Longrightarrow W=\int\limits^1_0 { [ < 3t-t^2, \ -t^2+3t-1, \ -9t^2-t+1 > \cdot} < 3,1,-1 > ] \,dt


\Longrightarrow W=\int\limits^1_0 { [( 3t-t^2)(3)+(-t^2+3t-1)(1)+(-9t^2-t+1)(-1) ] \,dt


\Longrightarrow W=\int\limits^1_0 { [ 9t-3t^2-t^2+3t-1+9t^2+t-1 ] \,dt


\Longrightarrow W=\int\limits^1_0 { [5t^2+13t-2 ] \,dt

Using the power rule to integrate:
(d)/(dx)[x^n]=nx^(n-1)


\Longrightarrow W=(5)/(3)t^3+(13)/(2)t^2-2t \left. \right|_(0)^1


\Longrightarrow W=[(5)/(3)(1)^3+(13)/(2)(1)^2-2(1)]-[0]


\Longrightarrow W=(5)/(3)+(13)/(2)-2


\Longrightarrow \boxed{ W=(37)/(6)} \therefore Sol.

Question #15:

Given:


w_m=170 \ lb


w_c=25 \ lb


w_m+w_c=195 \ lbs


r_s=25 \ ft


h_s=90 \ ft


1 \ rev. =2\pi \Rightarrow 3 \ rev. =\bold{6\pi}

Find:


W= \ ?? \ ft-lbs

Equation:


W=\int\ {\vec F \cdot } \, d\vec r \Longrightarrow W=\int\ {[\vec F(\vec r(t)) \cdot r'(t)}]dt


\vec F(x,y,z)= < 0,0,195 > \ and \ r(t)= < 25cos(t),25sin(t),(90)/(6\pi)t >


r'(t)= < -25sin(t),25cos(t),(15)/(\pi) >


\Longrightarrow W=\int\ {[\vec F(\vec r(t)) \cdot r'(t)}]dt


\Longrightarrow W=\int\ {[ < 0,0,195 > \cdot < -25sin(t),25cos(t),(15)/(\pi) > ]dt


\Longrightarrow W=\int\ {[ (195)((15)/(\pi)) ]dt


\Longrightarrow W=\int\ {(2925)/(\pi) dt

Limits:
0\leq t\leq 6\pi


\Longrightarrow W=\int\limits^(6\pi)_0 {(2925)/(\pi) } \, dt


\Longrightarrow W= {(2925)/(\pi)t \left. \right|_(0)^(6\pi)


\Longrightarrow W= [{(2925)/(\pi)(6\pi)]-[0]


\Longrightarrow \boxed{W= 17,550 \ ft-lbs} \therefore Sol.

Let me know if these were correct! As I strive to give the most accurate answers! Thank you.

User Dtrunk
by
8.4k points

Related questions

asked Dec 22, 2024 58.1k views
Variance asked Dec 22, 2024
by Variance
8.6k points
1 answer
2 votes
58.1k views
asked Sep 15, 2024 149k views
Matias Sebastiao asked Sep 15, 2024
by Matias Sebastiao
7.5k points
1 answer
4 votes
149k views
asked Jun 5, 2018 73.6k views
Dacwe asked Jun 5, 2018
by Dacwe
8.5k points
1 answer
0 votes
73.6k views