21.2k views
5 votes
Find dy: y =

dy
=
x3 +52 +4
x²+4
Calculator
Check Answer
Jump to Answer

Find dy: y = dy = x3 +52 +4 x²+4 Calculator Check Answer Jump to Answer-example-1

1 Answer

7 votes

Given:


y=(x^3+5x+4)/(x^2+4)

Find:


dy=??

Rules/Methods that will be used:

Product rule:
\Longrightarrow (d)/(dx)[(f(x))/(g(x)) ] = (g(x)f'(x)-f(x)g'(x))/((g(x))^2)

Power Rule:
\Longrightarrow (d)/(dx)[x^n]=nx^(n-1)

Constant Rule:
\Longrightarrow (d)/(dx)[k]=0


\Longrightarrow y=(x^3+5x+4)/(x^2+4) \Longrightarrow dy=((x^2+4)((d)/(dx)[x^3+5x+4])-(x^3+5x+4)((d)/(dx)[x^2+4] ))/((x^2+4)^2)


\Longrightarrow dy=((x^2+4)(3x^2+5)-(x^3+5x+4)(2x))/((x^2+4)^2)

Simplify the expression.


\Longrightarrow dy=((x^2+4)(3x^2+5)-(x^3+5x+4)(2x))/((x^2+4)^2) \Longrightarrow dy=((3x^4+17x^2+20)-(2x^4+10x^2+8x))/((x^2+4)^2)


\Longrightarrow dy=(x^4+7x^2-8x+20)/((x^2+4)^2)

The expression cannot be simplified further.


Thus, dy=\boxed{(x^4+7x^2-8x+20)/((x^2+4)^2)} \therefore Sol.

User Andrew Hoos
by
8.6k points