15.7k views
3 votes
Please help urgently! maths trigonometry

Please help urgently! maths trigonometry-example-1
User Kirsti
by
7.5k points

2 Answers

1 vote

Explanation:


\tan( \alpha ) + (1)/( \tan( \alpha ) )


\frac{ { \tan( \alpha ) }^(2) + 1 }{ \tan( \alpha ) }

use the identity


{ \tan( \alpha ) }^(2) + 1 = { \sec( \alpha ) }^(2)

so we have


\frac{ { \sec( \alpha ) }^(2) }{ \tan( \alpha ) }

now we use the following id.


\sec( \alpha ) = (1)/( \cos( \alpha ) ) \: and \: \: \tan( \alpha) = ( \sin( \alpha ) )/( \cos( \alpha ) )

then, back to what we had


\frac{ \frac{1}{ { \cos( \alpha ) }^(2) } }{ ( \sin( \alpha ) )/( \cos( \alpha ) ) }

and finally, this equals to what we wanted to prove


(1)/( \sin( \alpha ) \cos( \alpha ) )

User Jason Kelly
by
8.8k points
6 votes

Answer:

See below for proof.

Explanation:

To prove the given trigonometric equation, we can use the following tangent trigonometric identities:


\boxed{\tan \theta=(\sin \theta)/(\cos \theta)}
\boxed{(1)/(\tan \theta)=(\cos \theta)/(\sin \theta)}

Therefore:


\tan \theta + (1)/(\tan \theta)=(\sin \theta)/(\cos \theta)+(\cos \theta)/(\sin \theta)

Add the fractions on the right side of the equation:


\begin{aligned}\tan \theta + (1)/(\tan \theta)&=(\sin \theta)/(\cos \theta)+(\cos \theta)/(\sin \theta)\\\\ &=(\sin \theta \cdot \sin \theta)/(\cos \theta \cdot \sin \theta)+(\cos \theta \cdot \cos \theta)/(\sin \theta \cdot \cos \theta)\\\\ &=(\sin^2 \theta )/(\sin \theta \cos \theta)+(\cos^2 \theta )/(\sin \theta \cos \theta)\\\\&=(\sin^2 \theta + \cos^2\theta)/(\sin \theta \cos\theta)\end{aligned}

Apply the identity sin²θ + cos²θ = 1:


\begin{aligned}\tan \theta + (1)/(\tan \theta)&=(\sin \theta)/(\cos \theta)+(\cos \theta)/(\sin \theta)\\\\ &=(\sin \theta \cdot \sin \theta)/(\cos \theta \cdot \sin \theta)+(\cos \theta \cdot \cos \theta)/(\sin \theta \cdot \cos \theta)\\\\ &=(\sin^2 \theta )/(\sin \theta \cos \theta)+(\cos^2 \theta )/(\sin \theta \cos \theta)\\\\&=(\sin^2 \theta + \cos^2\theta)/(\sin \theta \cos\theta)\\\\&=(1)/(\sin \theta \cos\theta)\end{aligned}

Therefore, we have proved that:


\tan \theta + (1)/(\tan \theta)=(1)/(\sin \theta \cos\theta)

User GustyWind
by
7.7k points