152k views
3 votes
You are playing a game that uses two fair number cubes. If the total on the number cubes is either 11 or 2 on your next turn, you win the game. What is the probability of winning on your next turn? Express your answer as a percent. If necessary, round your answer to the nearest tenth.

User Efi Fogel
by
8.6k points

1 Answer

0 votes

Answer:

8.3%

Explanation:

There are 36 possible outcomes when rolling two number cubes, since there are 6 possible outcomes for the first cube and 6 possible outcomes for the second cube.

To find the probability of winning on the next turn, we need to count the number of outcomes that give a sum of 11 or 2. There are two ways to get a sum of 11:

rolling a 5 on the first cube and a 6 on the second cube, or rolling a 6 on the first cube and a 5 on the second cube.

There is only one way to get a sum of 2: rolling a 1 on the first cube and a 1 on the second cube.

So, the probability of winning on the next turn is:

(number of favorable outcomes) / (total number of possible outcomes) = (2 + 1) / 36 = 3/36

We can simplify this fraction by dividing both the numerator and the denominator by 3:

3/36 = 1/12

So, the probability of winning on the next turn is 1/12, or approximately 8.3% (rounded to the nearest tenth).

User Symaxion
by
7.7k points