152k views
3 votes
You are playing a game that uses two fair number cubes. If the total on the number cubes is either 11 or 2 on your next turn, you win the game. What is the probability of winning on your next turn? Express your answer as a percent. If necessary, round your answer to the nearest tenth.

User Efi Fogel
by
8.6k points

1 Answer

0 votes

Answer:

8.3%

Explanation:

There are 36 possible outcomes when rolling two number cubes, since there are 6 possible outcomes for the first cube and 6 possible outcomes for the second cube.

To find the probability of winning on the next turn, we need to count the number of outcomes that give a sum of 11 or 2. There are two ways to get a sum of 11:

rolling a 5 on the first cube and a 6 on the second cube, or rolling a 6 on the first cube and a 5 on the second cube.

There is only one way to get a sum of 2: rolling a 1 on the first cube and a 1 on the second cube.

So, the probability of winning on the next turn is:

(number of favorable outcomes) / (total number of possible outcomes) = (2 + 1) / 36 = 3/36

We can simplify this fraction by dividing both the numerator and the denominator by 3:

3/36 = 1/12

So, the probability of winning on the next turn is 1/12, or approximately 8.3% (rounded to the nearest tenth).

User Symaxion
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.