Answer:

Explanation:
To solve this problem, we need to use the exterior product (∧), the interior product (i_v), and the derivative operator (∂).
First, let's find i_vα:

= 6 - 9 - 20
= -23
Next, let's find i_vβ:

Now, let's find α ∧ β:
α ∧ β = (2 dx + 3 dy - 5 dz) ∧ (dx ∧ dy + 7 dz ∧ dx - 3 dy ∧ dz)
= 2 dx ∧ dx ∧ dy + 7 dz ∧ dx ∧ dx - 3 dy ∧ dz ∧ dx
+ 3 dy ∧ dx ∧ dy + 7 dz ∧ dx ∧ dy - 5 dz ∧ dy ∧ dz
= -3 dx ∧ dy ∧ dz + 3 dy ∧ dz ∧ dx + 7 dz ∧ dx ∧ dy - 7 dz ∧ dx ∧ dy - 5 dz ∧ dy ∧ dz
= -3 dx ∧ dy ∧ dz + 3 dy ∧ dz ∧ dx - 5 dz ∧ dy ∧ dz
Now, let's find i_v(α ∧ β):
i_v(α ∧ β) = -23∂z ∧ (-3 dx ∧ dy ∧ dz + 3 dy ∧ dz ∧ dx - 5 dz ∧ dy ∧ dz)
= 69 dx ∧ dy - 69 dy ∧ dz + 115 dz ∧ dy
Finally, let's verify that i_v(α ∧ β) = i_v(α) ∧ β - α ∧ i_v(β):

Therefore,
