Answer:
the difference quotient of f(x) = 2x^2 + x - 3 is:
(f(x + h) - f(x))/h = (4x + 2h - 1) + (2/h), where h is not equal to zero.
Explanation:
To find the difference quotient of f(x) = 2x^2 + x - 3, we need to evaluate the expression (f(x + h) - f(x))/h, where h is not equal to zero.
f(x + h) = 2(x + h)^2 + (x + h) - 3 = 2x^2 + (4h + 1)x + 2h^2 - h - 1
f(x) = 2x^2 + x - 3
Therefore,
f(x + h) - f(x) = (2x^2 + (4h + 1)x + 2h^2 - h - 1) - (2x^2 + x - 3)
= 4hx + 2h^2 - h + 2
Dividing by h, we get:
(f(x + h) - f(x))/h = (4x + 2h - 1) + (2/h)
As h approaches 0, the second term (2/h) approaches infinity, so the difference quotient is not defined at h = 0.
Therefore, the difference quotient of f(x) = 2x^2 + x - 3 is:
(f(x + h) - f(x))/h = (4x + 2h - 1) + (2/h), where h is not equal to zero.