127k views
3 votes
The population of a certain West Virginia city was 119,600 in 1990. By 2012, the population had become 87,050. (A) Find the exponential function of the form A (t) = Pert modeling the size of the population after t years. (use as many decimals for your rate as possible) Number t A(t) = Number e

User Ahmed
by
8.7k points

1 Answer

2 votes

Answer:

119,600e^(-0.0346t)

Explanation:

A) To find the exponential function of the form A(t) = Pert modeling the size of the population after t years, we need to use the given information to find the values of P and r.

We know that in 1990 (when t=0), the population was 119,600. So we have:

A(0) = 119,600

We also know that by 2012 (when t=22), the population had become 87,050. So we have:

A(22) = 87,050

Using the formula A(t) = Pert, we can write:

119,600 = Pe^(r*0)

87,050 = Pe^(r*22)

Simplifying the first equation, we get:

P = 119,600

Substituting this value into the second equation and dividing both sides by P, we get:

e^(22r) = 0.7278

Taking the natural logarithm of both sides, we get:

22r = ln(0.7278)

r = ln(0.7278)/22

r ≈ -0.0346

Therefore, the exponential function modeling the size of the population after t years is:

A(t) = 119,600e^(-0.0346t)

BOLD ANSWER: A(t) = 119,600e^(-0.0346t)

User JohnSF
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories