208k views
3 votes
Find the open intervals on which the function is increasing or decreasing. g(x) = x^2 - 2x - 8

User ABMagil
by
8.0k points

1 Answer

0 votes

Answer:

To find the intervals on which the function g(x) = x^2 - 2x - 8 is increasing or decreasing, we need to take the derivative of g(x) with respect to x and find where it is positive (increasing) or negative (decreasing).

g(x) = x^2 - 2x - 8

g'(x) = 2x - 2

Now we need to find where g'(x) > 0 (increasing) and where g'(x) < 0 (decreasing).

g'(x) > 0

2x - 2 > 0

2x > 2

x > 1

g'(x) < 0

2x - 2 < 0

2x < 2

x < 1

Therefore, g(x) is increasing on the interval (1, infinity) and decreasing on the interval (-infinity, 1).

User Dhiral Pandya
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories