Answer:
∫dx/(sinx+sin2x)
Explanation:
To evaluate the definite integral ∫dx/(sinx+sin2x), we can use the substitution u = sin x. This substitution allows us to rewrite the integrand as follows:
∫dx/(sinx+sin2x) = ∫du/(u+u^2)
We can then rewrite the integrand as a partial fraction:
∫du/(u+u^2) = ∫(1/u - 1/(u+1))du
Integrating each of these terms separately, we get:
∫(1/u - 1/(u+1))du = ln|u| - ln|u+1| + C
Substituting back in for u, we get:
ln|sin x| - ln|sin x + 1| + C
This is the final answer for the definite integral ∫dx/(sinx+sin2x).