21.3k views
4 votes
If I have 8.3 moles of gas at a pressure of 9 atm and at a temperature of 62°C, what is the volume of the container that the gas is in?

1 Answer

5 votes

Step-by-step explanation:

To calculate the volume of the container that the gas is in, we can use the ideal gas law, which is given by the equation:

PV = nRT

where:

P = pressure of the gas (in atm)

V = volume of the gas (in liters)

n = amount of gas in moles

R = ideal gas constant (0.0821 L·atm/(mol·K))

T = temperature of the gas (in Kelvin)

First, we need to convert the given temperature from Celsius to Kelvin by adding 273.15 to it:

T = 62°C + 273.15 = 335.15 K

Now we can plug in the given values into the ideal gas law equation and solve for V:

P = 9 atm

n = 8.3 moles

R = 0.0821 L·atm/(mol·K)

T = 335.15 K

PV = nRT

9 V = 8.3 * 0.0821 * 335.15

V = (8.3 * 0.0821 * 335.15) / 9

V ≈ 26.79 liters

So, the volume of the container that the gas is in is approximately 26.79 liters.

User Mike Goodwin
by
8.2k points