Step-by-step explanation:
To calculate the volume of the container that the gas is in, we can use the ideal gas law, which is given by the equation:
PV = nRT
where:
P = pressure of the gas (in atm)
V = volume of the gas (in liters)
n = amount of gas in moles
R = ideal gas constant (0.0821 L·atm/(mol·K))
T = temperature of the gas (in Kelvin)
First, we need to convert the given temperature from Celsius to Kelvin by adding 273.15 to it:
T = 62°C + 273.15 = 335.15 K
Now we can plug in the given values into the ideal gas law equation and solve for V:
P = 9 atm
n = 8.3 moles
R = 0.0821 L·atm/(mol·K)
T = 335.15 K
PV = nRT
9 V = 8.3 * 0.0821 * 335.15
V = (8.3 * 0.0821 * 335.15) / 9
V ≈ 26.79 liters
So, the volume of the container that the gas is in is approximately 26.79 liters.