I gotchu <3
Since the vertex is (0, -3), the quadratic function can be written in vertex form as:
f(x) = a(x - 0)^2 - 3
Where 'a' is a constant that determines the shape of the parabola. Since the end behavior of the function is y --> - Infinite as x --> - infinite and y --> - Infinite as x --> + infinite, the leading coefficient 'a' must be negative.
So, f(x) = -a(x^2 - 0x) - 3
Now, using the given point (1, -7) on the parabola, we can substitute the coordinates into the function and solve for 'a'.
-7 = -a(1^2 - 0(1)) - 3
-7 = -a - 3
a = 10
Therefore, the quadratic function that satisfies the given characteristics is:
f(x) = -10x^2 - 3
Hope this helps :)