30.7k views
2 votes
The monthly cost (in dollars) of a long-distance phone plan is a linear function of the total calling time (in minutes). The monthly cost for 35 minutes of calls is $16.83 and the monthly cost for 52 minutes is $18.87. What is the monthly cost for 39 minutes of calls?

1 Answer

4 votes

Answer: We can use the two given points to find the equation of the line and then plug in 39 for the calling time to find the corresponding monthly cost.

Let x be the calling time (in minutes) and y be the monthly cost (in dollars). Then we have the following two points:

(x1, y1) = (35, 16.83)

(x2, y2) = (52, 18.87)

The slope of the line passing through these two points is:

m = (y2 - y1) / (x2 - x1) = (18.87 - 16.83) / (52 - 35) = 0.27

Using point-slope form with the first point, we get:

y - y1 = m(x - x1)

y - 16.83 = 0.27(x - 35)

Simplifying, we get:

y = 0.27x + 7.74

Therefore, the monthly cost for 39 minutes of calls is:

y = 0.27(39) + 7.74 = $18.21

Explanation:

User Megin
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories