71.1k views
4 votes
The equation of a parabola is f(x)=x^2-4x-5

the axis of symmetry is x = ?
the vertex of the parabola is (?,?)

User MobIT
by
8.2k points

1 Answer

6 votes
Answer
Our axis of symmetry is 2
Our vertex is ( 2, -9)

Step by step

We can factor x^2 -4x -5
( x -5) ( x + 1)
Our x intercepts are x=5 and x= -1
The halfway point between these points is 2 so your axis of symmetry is 2

To find the x of the vertex use formula

X = - b/2a
X = - -4/2
X = 4/2
X = 2

Now use the value of x = 2 in the original equation y= x^2 -4x -5

y = 2^2 (-4)(2) -5
y = 4 -8 -5
y = -9

I attached a graph to prove my solutions
The equation of a parabola is f(x)=x^2-4x-5 the axis of symmetry is x = ? the vertex-example-1
User Import Random
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.