188k views
2 votes
The count in a bateria culture was initially 300, and after 35 minutes the population had increased to 1600. Find the doubling period. Find the population after 70 minutes. When will the population reach 10000?

User Zartch
by
7.2k points

1 Answer

2 votes
The doubling period should be calculated using the formula:

doubling time = (ln 2) / r

where r is the exponential growth rate.

Using the given information, we can calculate the exponential growth rate as:

r = (ln N1 - ln N0) / t

where N0 is the initial population, N1 is the final population, and t is the time elapsed. Plugging in the values, we get:

r = (ln 1600 - ln 300) / 35
r = 0.5128

Now we can calculate the doubling period as:

doubling time = (ln 2) / r
doubling time = (ln 2) / 0.5128
doubling time = 1.35 hours (rounded to two decimal places)

Therefore, the doubling period is approximately 1.35 hours.

To find the population after 70 minutes, we can use the formula for exponential growth:

N = N0 * e^(rt)

Plugging in the values, we get:

N = 300 * e^(0.5128 * (70/60))
N = 1467.05

Therefore, the population after 70 minutes is approximately 1467.05.

To find when the population will reach 10000, we can use the same formula again:

N = N0 * e^(rt)

Plugging in the given values, we get:

10000 = 300 * e^(0.5128 * t)

Dividing both sides by 300, we get:

e^(0.5128 * t) = 10000 / 300

e^(0.5128 * t) = 33.3333

Taking the natural logarithm of both sides, we get:

0.5128 * t = ln(33.3333)

t = ln(33.3333) / 0.5128

t = 23.37 hours (rounded to two decimal places)

Therefore, the population will reach 10000 after approximately 23.37 hours.
User Dilli
by
9.2k points

Related questions

asked Jun 26, 2024 64.8k views
Omab asked Jun 26, 2024
by Omab
8.7k points
1 answer
1 vote
64.8k views