9.4k views
0 votes
Solve the following methods:

a) y''-2y'-3y= e^4x
b) y''+y'-2y=3x*e^x
c) y"-9y'+20y=(x^2)*(e^4x)

1 Answer

5 votes

Answer:

a) To solve the differential equation y''-2y'-3y= e^4x, we first find the characteristic equation:

r^2 - 2r - 3 = 0

Factoring, we get:

(r - 3)(r + 1) = 0

So the roots are r = 3 and r = -1.

The general solution to the homogeneous equation y'' - 2y' - 3y = 0 is:

y_h = c1e^3x + c2e^(-x)

To find the particular solution, we use the method of undetermined coefficients. Since e^4x is a solution to the homogeneous equation, we try a particular solution of the form:

y_p = Ae^4x

Taking the first and second derivatives of y_p, we get:

y_p' = 4Ae^4x

y_p'' = 16Ae^4x

Substituting these into the original differential equation, we get:

16Ae^4x - 8Ae^4x - 3Ae^4x = e^4x

Simplifying, we get:

5Ae^4x = e^4x

So:

A = 1/5

Therefore, the particular solution is:

y_p = (1/5)*e^4x

The general solution to the non-homogeneous equation is:

y = y_h + y_p

y = c1e^3x + c2e^(-x) + (1/5)*e^4x

b) To solve the differential equation y'' + y' - 2y = 3xe^x, we first find the characteristic equation:

r^2 + r - 2 = 0

Factoring, we get:

(r + 2)(r - 1) = 0

So the roots are r = -2 and r = 1.

The general solution to the homogeneous equation y'' + y' - 2y = 0 is:

y_h = c1e^(-2x) + c2e^x

To find the particular solution, we use the method of undetermined coefficients. Since 3xe^x is a solution to the homogeneous equation, we try a particular solution of the form:

y_p = (Ax + B)e^x

Taking the first and second derivatives of y_p, we get:

y_p' = Ae^x + (Ax + B)e^x

y_p'' = 2Ae^x + (Ax + B)e^x

Substituting these into the original differential equation, we get:

2Ae^x + (Ax + B)e^x + Ae^x + (Ax + B)e^x - 2(Ax + B)e^x = 3xe^x

Simplifying, we get:

3Ae^x = 3xe^x

So:

A = 1

Therefore, the particular solution is:

y_p = (x + B)e^x

Taking the derivative of y_p, we get:

y_p' = (x + 2 + B)e^x

Substituting back into the original differential equation, we get:

(x + 2 + B)e^x + (x + B)e^x - 2(x + B)e^x = 3xe^x

Simplifying, we get:

-xe^x - Be^x = 0

So:

B = -x

Therefore, the particular solution is:

y_p = xe^x

The general solution to the non-homogeneous equation is:

y = y_h + y_p

y = c1e^(-2x) + c2e^x + xe^x

c) To solve the differential equation y" - 9y' + 20y = x^2*e^4x, we first find the characteristic equation:

r^2 - 9r + 20 = 0

Factoring, we get:

(r - 5)(r - 4) = 0

So the roots are r = 5 and r = 4.

The general solution to the homogeneous equation y" - 9y' + 20y = 0 is:

y_h = c1e^4x + c2e^5x

To find the particular solution, we use the method of undetermined coefficients. Since x^2*e^4x is a solution to the homogeneous equation, we try a particular solution of the form:

y_p = (Ax^2 + Bx + C)e^4x

Taking the first and second derivatives of y_p, we get:

y_p' = (2Ax + B)e^4x + 4Axe^4x

y_p'' = 2Ae^4x +

User Ismirsehregal
by
7.9k points