We can use the trigonometric identities to find the exact values of the expressions.
First, we can find cos(alpha) and cos(beta) using the Pythagorean identity:
cos(alpha) = sqrt(1 - sin^2(alpha)) = sqrt(1 - (24/25)^2) = 7/25
cos(beta) = -sqrt(1 - sin^2(beta)) = -sqrt(1 - (15/17)^2) = -8/17 (since beta is in quadrant II, where cosine is negative)
Next, we can use the sum formulas for sine and cosine to find sin(alpha + beta) and cos(alpha + beta):
sin(alpha + beta) = sin(alpha)cos(beta) + cos(alpha)sin(beta) = (24/25)(-8/17) + (7/25)(15/17) = -117/425
cos(alpha + beta) = cos(alpha)cos(beta) - sin(alpha)sin(beta) = (7/25)(-8/17) - (24/25)(15/17) = -24/85
Finally, we can use the quotient identity for tangent to find tan(alpha + beta):
tan(alpha + beta) = sin(alpha + beta) / cos(alpha + beta) = (-117/425) / (-24/85) = 39/85
Therefore, cos(alpha + beta) sin(alpha + beta) = (-24/85)(-117/425) = 936/7225, and tan(alpha + beta) = 39/85.