157k views
1 vote
Answer and explain in detail​

Answer and explain in detail​-example-1
User Shabith
by
8.3k points

1 Answer

3 votes

Answer:

The area of right-angled triangle is 30 cm².

Step-by-step Step-by-step explanation:

Given :

  • Here we given that the base and hypotenuse of triangle 12 cm and 13 cm respectively.

To Find :

  • We have to find the area of right-angled triangle but before we will find the height of the triangle.

Solution :

By using Pythagoras Theorem we will find the hypotenuse of triangle :


\sf{\longrightarrow{{(Hypotenuse)}^(2) = {(Height)}^(2) + {(Base)}^(2)}}

Substituting all the given values in the formula to find hypotenuse :

  • Hypotenuse = 13 cm
  • Base = 12 cm


\sf{\longrightarrow{{(Hypotenuse)}^(2) = {(Height)}^(2) + {(Base)}^(2)}}


\sf{\longrightarrow{{(13)}^(2) = {(Height)}^(2) + {(12)}^(2)}}


\sf{\longrightarrow{(13 * 13) = {(Height)}^(2) + {(12 * 12)}}}


\sf{\longrightarrow{(169) = {(Height)}^(2) + {(144)}}}


\sf{\longrightarrow{{(Height)}^(2) = 169 - 144}}


\sf{\longrightarrow{{(Height)}^(2) = 25}}


\sf{\longrightarrow{{(Height)} = √(25)}}


\sf{\longrightarrow{\underline{\underline{\red{(Height) = 5 \: cm}}}}}

Hence, the height of triangle is 5 cm.


\begin{gathered} \end{gathered}

Now, calculating the area of right-angled triangle by substituting all the given values in the formula :


\dashrightarrow{\sf{Area_((\triangle)) = (1)/(2)bh}}

  • b (Base) = 12 cm
  • h (Height) = 5 cm


\dashrightarrow{\sf{Area_((\triangle)) = (1)/(2)bh}}


\dashrightarrow{\sf{Area_((\triangle)) = (1)/(2) * b * h}}


\dashrightarrow{\sf{Area_((\triangle)) = (1)/(2) * 12* 5}}


\dashrightarrow{\sf{Area_((\triangle)) = 6* 5}}


\dashrightarrow{\sf{\underline{\underline{\pink{Area_((\triangle)) =30 \: {cm}^(2)}}}}}

Hence, the area of triangle is 30 cm².

—————————————————

User Index Hacker
by
8.4k points

No related questions found