74.9k views
1 vote
In the first order "A -> products" reaction, initially [A] = 0.816 M, after 16.0 minutes it is [A] = 0.632 M. rate constant , what is the value of k ?

1 Answer

4 votes

The first order reaction is defined by the rate law:

rate = k[A]

where k is the rate constant and [A] is the concentration of the reactant.

If we integrate this rate law, we get:

ln([A]_t/[A]_0) = -kt

where [A]_t is the concentration of A at time t, [A]_0 is the initial concentration of A, k is the rate constant, and t is time.

We can use this equation to solve for k given the initial and final concentrations of A and the time interval.

In this case, we have:

[A]_t = 0.632 M

[A]_0 = 0.816 M

t = 16.0 min

Substituting these values into the equation above, we get:

ln(0.632/0.816) = -k(16.0)

Solving for k, we get:

k = (1/16.0) * ln(0.816/0.632) = 0.0316 min^-1

Therefore, the value of the rate constant k for this first order reaction is 0.0316 min^-1.


\huge{\colorbox{black}{\textcolor{lime}{\textsf{\textbf{I\:hope\:this\:helps\:!}}}}}


\begin{align}\colorbox{black}{\textcolor{white}{\underline{\underline{\sf{Please\: mark\: as\: brillinest !}}}}}\end{align}


\textcolor{blue}{\small\texttt{If you have any further questions,}}
\textcolor{blue}{\small{\texttt{feel free to ask!}}}

♥️
{\underline{\underline{\texttt{\large{\color{hotpink}{Sumit\:\:Roy\:\:(:\:\:}}}}}}\\

User MatrixTXT
by
7.7k points