179k views
1 vote
A loop of area 0.100 m² is oriented at

a 15.5 degree angle to a 0.500 T
magnetic field. It rotates until it is at a
45.0 degree angle with the field. What
is the resulting CHANGE in the
magnetic flux?
[?] Wb

A loop of area 0.100 m² is oriented at a 15.5 degree angle to a 0.500 T magnetic field-example-1
User Alex Shyba
by
7.5k points

1 Answer

7 votes

Answer:

-0.0122 Wb

Step-by-step explanation:

The magnetic flux through a loop of area A and with an angle θ between the magnetic field and the loop's normal is given by:

Φ = BAcos(θ)

The initial magnetic flux is:

Φ1 = BAcos(θ1) = 0.500 T * 0.100 m² * cos(15.5°) = 0.0476 Wb

The final magnetic flux is:

Φ2 = BAcos(θ2) = 0.500 T * 0.100 m² * cos(45.0°) = 0.0354 Wb

The change in magnetic flux is:

ΔΦ = Φ2 - Φ1 = 0.0354 Wb - 0.0476 Wb = -0.0122 Wb

Therefore, the resulting change in magnetic flux is -0.0122 Wb.

User Abdurrahim
by
8.8k points