Answer:
4,261.4 engines
Explanation:
To find the number of engines that minimize the unit cost, we need to find the minimum value of the function C(x) given by:
C(x) = (Cx - 0.6x)/(2156x + 16664)
where C is a constant representing the fixed costs of manufacturing the engines.
To find the minimum, we need to take the derivative of C(x) with respect to x and set it equal to zero:
C'(x) = (2156Cx - 0.6x(2156 + 16664)) / (2156x + 16664)^2 = 0
Simplifying the equation, we get:
2156Cx - 0.6x(2156 + 16664) = 0
2156Cx = 0.6x(2156 + 16664)
C = 0.6(2156 + 16664)/2156 = 2.2
So the unit cost is minimized when C = 2.2. Substituting this value back into the original equation, we get:
C(x) = (2.2x - 0.6x)/(2156x + 16664)
Simplifying, we get:
C(x) = (1.6x)/(2156x + 16664)
To find the number of engines that minimize the unit cost, we need to find the value of x that makes C(x) as small as possible. We can do this by finding the value of x that makes the derivative of C(x) equal to zero:
C'(x) = (1.6(2156x + 16664) - 2156(1.6x)) / (2156x + 16664)^2 = 0
Simplifying the equation, we get:
1.6(2156x + 16664) - 2156(1.6x) = 0
688x = 2,933,824
x = 4,261.4
Therefore, the number of engines that minimize the unit cost is approximately 4,261.4
Hope this helps!