86.3k views
1 vote
what happens to the solubility of caf2 in water if 0.1 m hno3 is added to the solution at 298 k? (ksp = 4.0 x 10−11)

User Ira Cooke
by
9.0k points

1 Answer

6 votes

*shrug

Adding HNO3 to a solution of CaF2 and water will increase the concentration of H+ ions in the solution, according to the following reaction:

HNO3 + H2O ⇌ H3O+ + NO3-

The increased concentration of H+ ions will shift the equilibrium of the dissociation reaction of CaF2 in the opposite direction, making it less soluble. The dissociation reaction of CaF2 is as follows:

CaF2(s) ⇌ Ca2+(aq) + 2F-(aq)

The solubility product constant expression for CaF2 is:

Ksp = [Ca2+][F-]^2

If the solubility of CaF2 is S, then at equilibrium, [Ca2+] = S and [F-] = 2S. Therefore,

Ksp = S * (2S)^2 = 4S^3

Now, if 0.1 M HNO3 is added to the solution, it will increase the H+ ion concentration, which will shift the dissociation equilibrium of CaF2 to the left, decreasing the solubility. The reaction can be written as:

CaF2(s) + 2H+(aq) ⇌ Ca2+(aq) + 2HF(aq)

The equilibrium expression for this reaction is:

K = [Ca2+][HF]^2/[H+]^2

At equilibrium, the concentrations of Ca2+ and HF will be less than S, and the concentration of H+ will be 0.1 M. We can use the solubility product constant and the equilibrium expression to solve for the new solubility:

K = [Ca2+][HF]^2/[H+]^2

4.0 x 10^-11 = (S - x)(2S - 2x)^2/(0.1)^2

Solving for x, we get x = 2.9 x 10^-5 M

Therefore, the new solubility of CaF2 in the presence of 0.1 M HNO3 is S - x = 1.0 x 10^-6 M.

*IG:whis.sama_ent*

User Gary Fixler
by
8.4k points