a) The solubility product constant for SrSO4 is given by:
Ksp = [Sr2+][SO42-]
Let's assume the molar solubility of SrSO4 in water is x mol/L. Then at equilibrium, the concentrations of Sr2+ and SO42- ions will also be x mol/L each. Substituting these values into the expression for Ksp gives:
Ksp = x * x = x^2
So, x = sqrt(Ksp) = sqrt(7.610^-7) = 8.710^-4 mol/L
Therefore, the molar solubility of SrSO4 in pure water is 8.7*10^-4 mol/L.
b) The solubility product constant for SrF2 is given by:
Ksp = [Sr2+][F^-]^2
Let's assume the molar solubility of SrF2 in water is x mol/L. Then at equilibrium, the concentrations of Sr2+ and F- ions will also be x mol/L each. Substituting these values into the expression for Ksp gives:
Ksp = x * x^2 = x^3
So, x = (Ksp)^(1/3) = (7.910^-10)^(1/3) = 3.310^-4 mol/L
Therefore, the molar solubility of SrF2 in pure water is 3.3*10^-4 mol/L.
c) When Sr(NO3)2 is added to the solution containing F- and SO42-, two possible reactions can occur:
SrF2(s) ⇌ Sr2+(aq) + 2F-(aq)
SrSO4(s) ⇌ Sr2+(aq) + SO42-(aq)
We need to determine which salt will precipitate first. This can be done by calculating the ion product (Q) for each salt and comparing it to the corresponding solubility product constant (Ksp).
For SrF2: Q = [Sr2+][F^-]^2 = (0.020+ x)^2 * (2x)^2
For SrSO4: Q = [Sr2+][SO42-] = (0.10 + x) * x
where x is the molar solubility of the salt that will precipitate.
When the first salt starts to precipitate, Q = Ksp for that salt. Let's assume that SrF2 precipitates first. Then, we have:
Q = (0.020+ x)^2 * (2x)^2 = Ksp for SrF2 = 7.9*10^-10
Solving for x gives x = 2.2*10^-5 mol/L, which is the molar solubility of SrF2 at the point of precipitation.
The concentration of Sr2+ in the solution at this point is:
[Sr2+] = 0.020 + x = 0.020 + 2.2*10^-5 = 0.020022 mol/L
d) When the second salt starts to precipitate, the concentration of Sr2+ in the solution will remain the same, but the concentrations of F- and SO42- will change due to the reaction:
SrF2(s) + SrSO4(s) ⇌ 2Sr2+(aq) + SO42-(aq) + 2F-(aq)
Let's assume that SrF2 is the first precipitate and SrSO4 is the second. At the point when SrSO4 starts to precipitate, the concentration of F- in the solution is:
[F^-]
*IG:whis.sama_ent*