a. Probability that wave height is at most 0.5 meters:

b. Probability that wave height exceeds its mean by more than one standard deviation:
.
c. Median of the wave-height distribution:

d. p th percentile of the wave-height distribution:

Using the provided Weibull distribution parameters:
a. Probability that wave height is at most 0.5 meters:
![\[ P(X \leq 0.5) = 1 - e^{-(0.5/0.863)^(1.817)} \approx 0.3467 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/5zr1v8vxwqfnb8bud7frkrmd3emcqv05cl.png)
b. Probability that wave height exceeds its mean value by more than one standard deviation:
First, calculate the mean
and standard deviation
of the Weibull distribution:
![\[ \mu = 1.817 \cdot \Gamma\left(1 + (1)/(0.863)\right) \approx 1.817 \cdot 1.559 \approx 2.83 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/6fdwfv483uwln7hvct2bwmuymbtzm4vj2w.png)
![\[ \sigma = 1.817 \cdot \sqrt{\Gamma\left(1 + (2)/(0.863)\right) - \left(\Gamma\left(1 + (1)/(0.863)\right)\right)^2} \approx 1.817 \cdot √(2.913 - 2.429) \approx 1.01 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/l6kjui1l1zrwchrz5fyh5xgnd4vi1tp7zw.png)
Then find:
![\[ P(X > \mu + \sigma) = 1 - P(X \leq \mu + \sigma) = 1 - (1 - e^{-(3.83/0.863)^(1.817)}) \approx 0.3493 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/kavcrx2iz4p60qwse5kqlhiqv2v9j7uk8h.png)
c. Median of the wave-height distribution:
![\[ \text{Median} = \mu \cdot (\ln 2)^(1/0.863) \approx 2.83 \cdot 1.660 \approx 4.70 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/lj10faaajmpdvi8kkbw8kgni8bfv0h00xi.png)
d. For the pth percentile of the wave-height distribution:
![\[ \text{Percentile} = 1.817 \cdot (-\ln(1 - p))^(1/0.863) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/dgus98tmc29jji458n63t1qmi73qreacbv.png)