97.2k views
0 votes
X3+y3+z3=k

with working out

User Algernon
by
8.1k points

1 Answer

4 votes

Explanation:

The equation x^3 + y^3 + z^3 = k is a three-variable equation known as a cubic equation. To solve for one variable in terms of the other two, we need additional information or constraints on the values of the variables. Without any constraints, we can still make some observations about the equation.

For example, when k = 0, the equation becomes x^3 + y^3 + z^3 = 0, which is known as the Fermat's Last Theorem. The theorem states that there are no positive integer solutions to this equation for n > 2. In other words, there are no three positive integers x, y, and z such that x^n + y^n = z^n for n > 2.

If we assume that k is a nonzero constant, we can rewrite the equation as:

z^3 = k - x^3 - y^3

This shows that z is a function of x and y, and we can plot the function as a surface in three dimensions. The shape of the surface depends on the value of k, and it can be smooth or have sharp edges and corners.

Without more information or constraints, it is not possible to find the exact values of x, y, and z that satisfy the equation. However, we can use numerical methods or approximations to find approximate solutions for specific values of k.

User Dezi
by
8.0k points