Answer:
47.86 N
Step-by-step explanation:
The magnetic force on a current-carrying wire in a magnetic field is given by the formula:
F = BIL sinθ
where F is the magnetic force, B is the magnetic field, I is the current, L is the length of the wire, and θ is the angle between the wire and the magnetic field.
Substituting the given values, we get:
F = (1.99 T) x (10.7 A) x (2.22 m) x sin(40.4°)
F = 47.86 N
Therefore, the magnetic force on the wire is 47.86 N, in the direction perpendicular to both the magnetic field and the wire.
*IG:whis.sama_ent